Determination of Mandelbrot Set’s
Hyperbolic Component Centres

G. Álvarez, M. Romera, G. Pastor and F. Montoya
INSTITUTO DE FÍSICA APLICADA,
CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS
SERRANO 144, 28006 MADRID
E-mail: gonzalo@iec.csic.es

Abstract: In this work we present a very fast and parsimonious method to calculate the centre coordinates of hyperbolic components in the Mandelbrot set. The method we use constitutes an extension for the complex domain of the one developed by Myrberg for the real map $x \mapsto x^2 - p$, in which given the symbolic sequence of a superstable orbit, the parameter value originating such superstable orbit is worked out. We show that when dealing with complex domain sequences, some of the solutions obtained correspond to the centres of the Mandelbrot set’s hyperbolic components, while some others do not exist.
1. Introduction

According to Hao and Zheng [1], historically the symbolic dynamics appeared in topological dynamical systems theory during the 30’s. Being the only rigorous way to describe the chaotic movement in dynamical systems, its abstract mathematical form is hard to understand and to apply to the study of concrete models. However, in the case of unimodal maps, an applied symbolic dynamics was developed, constituting a valuable tool. The most important study about symbolic dynamics belongs to Metropolis, Stein and Stein [2] (MSS). In a previous work [3], we showed a sketch of the hyperbolic components generation in one dimensional quadratic maps using symbolic dynamics and the MSS algorithm.

Let us consider the real Mandelbrot map \(x_{n+1} = x_n^2 + c \). To represent the dynamics of a given orbit, we do not record the exact value of each iterate \(x_i \), but consider simply if it falls to the left (L), to the right (R) or on the critical point (C). Thus, for instance, the symbolic sequence of the period-2 superstable orbit is CLCLCL.... When restricted to a single period, it is written simply as CL.

Myrberg [4] proposed a method which leads straightforward to the parameter value when the corresponding symbolic sequence is known. To find for instance the \(c \)-parameter value of the period-3 superstable orbit with symbolic sequence CLR, it is enough to solve the equation \(c = -\sqrt{-c + \sqrt{-c}} \), which can be easily accomplished iterating (note that the solution is the fixed point of the map \(c_{n+1} = -\sqrt{-c_n + \sqrt{-c_n}} \)).

In general, the \(c \) value of the real Mandelbrot map’s parameter originating a real superstable orbit of a given symbolic sequence CLRXX...X (the first three letters are
always CLR for superstable orbits on the real axis) can be obtained by Myrberg’s formula [4]:

\[c = -\sqrt{-c + \sqrt{-c \pm \sqrt{-c \pm \ldots \pm -c}}} \]

(1)

where the symbol ± stands for a + sign or a – sign according to the expression of the orbit’s symbolic dynamics, assigning the + sign to the letter R and the – sign to the letter L. The first sign before the square root is always –, and corresponds to the first L in the orbit’s symbolic dynamics, whereas the second sign is always +, corresponding to the first R (CLRXX…X).

This simple but efficient method put forward by Myrberg, and used later by Kaplan [5], Zheng and Hao [6], Schroeder [7], and others, allows to obtain fast and parsimoniously the parameter value of an orbit of any period \(n \) for the real Mandelbrot map. For example, the parameter value \(c = -1.78187000761051\ldots \), corresponding to the period-24 orbit of symbolic sequence \(\text{CLR}^2\text{LRL}^2\text{R}^{\text{LR}^2}\text{LR} \), where \(\text{LR}^2 = \text{LR}^2\text{LRLR} \), can easily be found applying this method [8].

In this work we pretend to prove that this method also works for the complex plane extension, i.e., it will be shown that when applying the method devised by Myrberg for finding the parameter value originating orbits in the complex plane, the centres of the hyperbolic components [9] of the Mandelbrot set are obtained.

2. Extension of Myrberg’s Method to the Complex Plane

Let us consider now the complex Mandelbrot map

\[z_{n+1} = p_c(z) = z_n^2 + c \]

(2)
where \(z, c \in \mathbb{C} \). As is well known, the Mandelbrot set, \(M \), can be defined as the set of \(c \)-parameter values for which the orbit of the critical point, \(z_0 = 0 \), remains bounded, i.e., it does not tend to infinity as \(n \) tends to infinity:

\[
M = \{ c \in \mathbb{C} | p^n_c(0) \not\to \infty \text{ when } n \to \infty \}, \tag{3}
\]

where \(p^n_c(z) \) represents the \(n \)-th iteration of function (2), dependant on the \(c \)-parameter.

The real solutions considered in the introduction correspond to the centres of cardioids or disks (hyperbolic components) on the Mandelbrot set’s antenna (on the real axis), but what happens when we obtain pairs of complex conjugate solutions after applying Myrberg’s method to sequences of letters not corresponding to real orbits? Let us consider, for example, the orbit of symbolic sequence CLL. In this case, we obtain two complex conjugate solutions. When carefully examining these solutions, it is easy to realise that they correspond to the centres of the two biggest disks attached to the main cardioid of the Mandelbrot set (see Fig. 1). Therefore, solving Myrberg’s formula for different combinations of signs (different symbolic sequences), we normally obtain pairs of complex conjugate solutions which correspond to centres of cardioids or disks on the set’s periphery, although in some cases we can not obtain a solution because Myrberg’s formula does not converge.

In this context, and only as a very simple and useful operative tool, we shall develop an informal way of assigning complex sequences using the location of the orbit relative to the imaginary axis because it serves to our purpose of calculating the centres of the hyperbolic components. Thus, we shall consider the symbolic sequence of a complex superstable period-\(n \) orbit of the Mandelbrot set to be \(\overline{\text{CXX...X}} \), where we assign the
letter L to the iterates falling to the left of the imaginary axis and the R, to the iterates falling to the right. C represents the map’s critical point, \(z = 0 + 0i \). It is important to note that we are aware that sequences of complex numbers do not have a natural order and thus we do not pretend a rigorous description of orbits nor an extension of the kneading theory to the complex case (see the beautiful external rays theory by Douady and Hubbard [10] or [11]), but a useful operative way of describing orbits in order to find hyperbolic component centres, as will be seen later in this section. Another point to notice is that with this notation there always exist two symmetric orbits with respect to the real axis for each symbolic sequence, although it represents no inconvenience for our goal. For example, the symbolic sequence of the superstable period-3 orbits corresponding to the two disks tangent to the main cardioid of the Mandelbrot set (Fig. 1) is CLL for both disks. Hence, a single symbolic sequence gives rise to a pair of complex conjugate centres. In Table 1 are listed the values of these disks’ centres, along with the orbit followed by the critical point. Therefore, when talking about symbolic sequences in the complex case, we always mean two symmetric complex orbits with respect to the real axis.

By simple combinatorial, the maximum possible number of symbolic sequences of period \(n \) is \(2^{n-1} \) (for example, for \(n = 5 \), there exist 16 possible symbolic sequences), although not all of them will exist, as will be seen next. Provided that now the first two letters following to the C do not need to be L and R, respectively, as in the real case, all the possible ± signs in Myrberg’s formula

\[
c_{n+1} = \pm \sqrt{-c_n} \pm \sqrt{-c_n} \pm ... \pm \sqrt{-c_n}
\]

(4)
should be considered. We call Eq. (4) the Myrberg map. As shown in [12], the number
of period-\(n\) real orbits and the total number of period-\(n\) orbits in unimodal maps, both
real and complex, can be calculated from a formula devised by Weiss and Rogers [13]
and by Lutzky [14]. These results are summarised in Table 2, which we have worked
out until period 16. \(R_n\) is the number of real orbits, and \(C_n\) is the total number of orbits,
both real and complex. According to Table 2, for \(n = 5\) there exist 15 superstable orbits,
from which 3 are real and consequently 12 must be complex (6 complex conjugated
solutions). This means that out of the 16 possible letter combinations to make up the
symbolic sequences, only 3 sequences correspond to real orbits (CLR\(^3\), CLR\(^2\)L,
CLRL\(^2\)), while 6 sequences correspond to 6 pairs of symmetrical orbits (CLRLR, CL\(^4\),
CL\(^2\)RL, CL\(^2\)R\(^2\), CR\(^3\)LR, CR\(^3\)L). The remaining other 7 sequences do not exist (CL\(^3\)R,
CRL\(^3\), CRL\(^2\)R, CRLRL, CRLR\(^2\), CR\(^2\)L\(^2\), CR\(^4\)).

A method to work out the Mandelbrot set’s hyperbolic component centre coordinates of
a given period, consists of calculating the \(c\)-values for which the origin (the map’s
critical point) belongs to the period-\(n\) cycles in question: from Eq. (2), the values of the
centres looked for, \(\tau\), can be found as the zeroes of the polynomials

\[
p^\tau_n(0) \equiv p^\tau_{n-1}(\tau) = 0. \tag{5}
\]

As easily observed, for high periods this method becomes highly costly, requiring a
long computing time as \(n\) increases. The simple algebraic method developed by
Stephenson [12, 15, 16] of constructing exact analytical solutions to the parts of the
boundaries of the Mandelbrot set in the form of polynomial maps of the unit circle,
becomes almost impracticable for periods \(n \geq 10\), because the size of the numerical
coefficients and the number of terms in the various polynomials soon become too large to handle.

In this discouraging context, we show that the complex solutions obtained from Eq. (4), when fed the symbolic sequences corresponding to superstable points in the interior of whatever hyperbolic components, and considering that $c \in \mathbb{C}$ in Eq. (4), correspond to the centres of those cardioids and disks, on the Mandelbrot set’s periphery. In this way, the extension of Myrberg’s formula to the complex plane allows us to easily find the centres of the hyperbolic components of the Mandelbrot set.

Thus, when applying Myrberg’s method with $c \in \mathbb{C}$ to a given sequence, which we do not know in advance whether it exists or not, one of three cases takes place:

a) The method converges to a real solution: this means that the orbit with such symbolic sequence exists and is real. The value to which it converged is the centre of the disk or cardioid centred at the Mandelbrot set’s antenna.

b) The method converges to a complex solution: this means that we have found one of the two complex conjugated centres, and therefore there are two complex symmetric orbits with such symbolic sequence.

c) The method does not converge to a value, real nor complex: in this case, we do not know if this is due to a non-existent orbit, or to the failure of the method to converge. In the former situation, we know of no method yet that can tell whether a given complex symbolic sequence exists or not. In next section we shall see how to overcome the difficulty of a non-converging but existing sequence.
3. Exceptional Points

In those cases when Myrberg’s method does not converge to a solution, we found a way to transform the iterative Eq. (4) into an alternative one which does converge. For example, for the period-5 complex symbolic sequence CR₃L, corresponding to a disk centre on the periphery of the Mandelbrot set, the dynamical system:

\[c_{n+1} = f(c_n) = \frac{\sqrt{-c_n + \sqrt{-c_n + \sqrt{-c_n - \sqrt{-c_n}}}}}{c_n + 1} \quad (6) \]

does not converge to the value looked for, \(\sigma = 0.3795135881\ldots \pm 0.3349323056\ldots i \), i.e., \(\sigma \) is an unstable fixed point of the map (6). As it is well known, the stability of a fixed point is determined by its multiplier, \(\lambda_\sigma \), defined as the absolute value of the derivative of the map’s function evaluated at that fixed point, \(\sigma \).

In system (6), the multiplier, \(\lambda_\sigma = 1.15670052\ldots \), is greater than unity if evaluated at the point \(\sigma \), corresponding to the disk’s centre. Therefore, for this map, \(\sigma \) represents a repelling fixed point. The way to solve this difficulty consists of studying an equivalent dynamical system that does present an attracting fixed point at \(\sigma \). Squaring both members in system (6):

\[c^2 = -c + \sqrt{-c + \sqrt{-c - \sqrt{-c}}} \]

and reordering:

\[c(c + 1) = -c + \sqrt{-c + \sqrt{-c - c}} \]

we obtain the new dynamical system

\[c_{n+1} = g(c_n) = \frac{\sqrt{-c_n + \sqrt{-c_n - \sqrt{-c_n}}}}{c_n + 1} \]
whose multiplier evaluated at the disk’s centre, \(\lambda = 0.3310211770 \ldots \), is now smaller than unity, thus leading to the desired attracting fixed point \(\tau \).

We call this strategy of looking for a new dynamical system whose multiplier is smaller than unity first order deflation. If after applying the first order deflation the system does not converge to the solution, it can be applied again. For example, let the period-7 complex sequence CR\(^3\)L, corresponding to a disk centre. The dynamical system used to find the centre is

\[
c_{n+1} = +\sqrt[n]{-c_n + \sqrt[n]{-c_n + \sqrt[n]{-c_n + \sqrt[n]{-c_n + \sqrt[n]{-c_n + \sqrt[n]{-c_n}}}}}} ,
\]

that does not converge to a value. Squaring and reordering (7) leads to:

\[
c^2 + c = +\sqrt[c]{-c + \sqrt[c]{-c + \sqrt[c]{-c + \sqrt[c]{-c + \sqrt[c]{-c + \sqrt[c]{-c}}}}}} ,
\]

whose first order deflation does not converge either to a value. If we square and reorder again, we obtain:

\[
c(c^3 + 2c^2 + c + 1) = +\sqrt[c]{-c + \sqrt[c]{-c + \sqrt[c]{-c + \sqrt[c]{-c + \sqrt[c]{-c}}}}} ,
\]

leading to the new dynamical system

\[
c_{n+1} = \frac{+\sqrt[n]{-c_n + \sqrt[n]{-c_n + \sqrt[n]{-c_n + \sqrt[n]{-c_n}}}}}{c_n^3 + 2c_n^2 + c_n + 1} ,
\]

with the same fixed point that (7), but now converging to the disk’s centre, \(\tau = 0.3760086818\ldots \pm 0.147493712\ldots i \). This procedure is called second order deflation.

Deflation can be repeated over and over, so as to obtain a converging formulation of (4). However, the deflation procedure is also limited, as will be discussed in next section.
4. Limitations of the deflation method

It was shown how the method devised by Myrberg can be used not only for real values of the map’s parameter, but for complex values as well. In the latter situation, in some cases when the dynamical system (4) does not converge to a value, it must be transformed into another one that does converge. This method, although working well in most cases, does not always work. Thus, for period \(n = 7 \) (with 27 complex conjugate solutions and 9 real solutions), it was not found an equivalent formulation of dynamical system (4) converging for the symbolic sequence \(\text{CRL}_2^2 \text{RL}_2^2 \), although the method works correctly for the rest of sequences. For \(n = 8 \) (with 52 complex conjugate solutions and 16 real solutions), the method does not converge when trying to obtain 7 centres, although it succeeds in finding the remaining 61 centres. The finding of alternative ways of formulating the dynamical system (4), so that it does converge in all cases, remains an open problem.

As a consequence, we deal with a method that, even though not infallible in all complex cases, constitutes a valuable helping tool when working with high periods. Up to now, no other method is known to algebraically find the hyperbolic components’ centres, other than the resolution of Eq. (5) for \(c \in \mathbb{C} \) or Stephenson’s method [12, 15, 16]. Unfortunately, for a relatively small period, such as \(n = 20 \), we find that the grade of Eq. (5) is 524,288. To illustrate the problem’s complexity, in Fig. 2 the polynomial corresponding to Eq. (5) has been plotted. As can be appreciated, the number of real solutions (zero-crossings) is huge, exactly 26,214, whereas the total number of complex conjugated solutions is 248,778. Even in the case that all solutions could be found, each of them should be checked until the \(c \)-value corresponding to the given symbolic
sequence is found. Myrberg’s method, however, offers the possibility of finding the solution fast and parsimoniously.

Let us see it with some examples. Firstly, given the period-20 symbolic sequence $CL^4RL^9RL^4$, when applying Myrberg’s formula, we reach easily to the solution $c = -0.540314023 \ldots \pm 0.612197542 \ldots i$, that corresponds to a cardioid centre on the periphery of the set.

Secondly, for the period-20 symbolic sequence $CL^2R^2L^2RL^3 RL^2L^2R$, we obtain directly the solution $c = -0.1680237817 \ldots \pm 1.041706480 \ldots i$, corresponding to another cardioid centre as well.

Thirdly, for the period-20 symbolic sequence $CLRL^4RL^4RL^2RLRL^2$, we also obtain directly the solution $c = -1.624274421 \ldots \pm 0.002163607760 \ldots i$, corresponding to a disk centre.

However, Myrberg’s method does not converge when trying the period-20 symbolic sequence $CR^2L^2R^2LR^3 LR^3L^2R^2L$. But when applying the first order deflation, then the solution $c = 0.3634622757 \ldots \pm 0.5893619612 \ldots i$ is fast reached, that corresponds to a cardioid centre.

As a last example, let us consider the period-30 symbolic sequence $CL^4RL^{14}RL^9$. If the polynomial resolution method is used, we find that the grade of Eq. (5) for $n = 30$ becomes 536,870,912, absolutely intractable. Likewise, it would be very costly to explore each of the solutions to check which of the symbolic sequences they originate coincides with the given one. On the contrary, if that sequence is tried with Myrberg’s method, the solution $c = -0.5513177379 \ldots \pm 0.6273074955 \ldots i$, that corresponds to a disk centre, is reached without problems.
The overall performance of the extension of Myrberg’s method is summed up in Table 3 as the rate of convergence when searching for the centres (superstable points). The number of symbolic sequences is calculated as \(\frac{C_n - R_n}{2} + R_n \). It has to be noted that this number is not simply \(C_n \), since in the case of complex orbits there are always two orbits with the same symbolic sequence.

5. Review of Results

In Table 4 we present the results obtained when the Myrberg method was applied through period-7 symbolic sequences. The asterisks in the “Symbolic Sequence” column inform of the order of deflation when applied: one * means first order deflation, two *’s mean second order deflation. The plots in the “Basin of attraction of the Myrberg map” column correspond to a graphical representation of the convergence of the Myrberg’s formula. Initial points converging in the side-4 square centred at (0, 0) to the centre of the superstable orbit are depicted in black. When the formula converges for any point in the interior of the side-4 square, then the word “converges” appears.

6. Conclusions

We used and extended Myrberg’s method to find the \(c \)-parameter value of superstable complex orbits, when only the symbolic sequence is known. Although the method presented in this paper does not converge in all complex cases, it is the only computationally reasonable alternative known to tackle the calculation of centres corresponding to hyperbolic components from a given symbolic sequence.
Acknowledgements

This research was supported by CICYT, Spain, under grant no. TIC95-0080, and by Comunidad de Madrid, Beca de Formación de Personal Investigador.
References

Table 1. Superstable orbits corresponding to the complex symbolic sequence CLL.

Table 2. Number of real orbits, R_n, and total number of orbits (both real and complex), C_n, depending on the period n.

Table 3. Performance of complex Myrberg’s method.

Table 4. Results of the application of complex Myrberg’s method through period-7 symbolic sequences. * indicates first order deflation. ** indicates second order deflation.

Figure 1. Mandelbrot set representation, with the disks of complex symbolic sequence CLL whose centres are at $c = -0.1225611669\pm 0.7448617667\ldots i$.

Figure 2. Real Mandelbrot map. Critical polynomial for $n = 20$.
<table>
<thead>
<tr>
<th>(c)</th>
<th>(-0.1225611669\ldots+0.7448617667\ldots i)</th>
<th>(-0.1225611669\ldots-0.7448617667\ldots i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_0)</td>
<td>(0+0i)</td>
<td>(0+0i)</td>
</tr>
<tr>
<td>(z_1)</td>
<td>(-0.1225611669\ldots+0.7448617667\ldots i)</td>
<td>(-0.1225611669\ldots-0.7448617667\ldots i)</td>
</tr>
<tr>
<td>(z_2)</td>
<td>(-0.66235897876\ldots+0.562279512088\ldots i)</td>
<td>(-0.66235897876\ldots-0.562279512088\ldots i)</td>
</tr>
</tbody>
</table>

Table 1
Table 2

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_n</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>15</td>
<td>27</td>
<td>63</td>
<td>120</td>
<td>252</td>
<td>495</td>
<td>1023</td>
<td>2010</td>
<td>4095</td>
<td>8127</td>
<td>16365</td>
<td>32640</td>
</tr>
<tr>
<td>R_n</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>16</td>
<td>28</td>
<td>51</td>
<td>93</td>
<td>170</td>
<td>315</td>
<td>585</td>
<td>1091</td>
<td>2048</td>
</tr>
</tbody>
</table>

Table 2
<table>
<thead>
<tr>
<th>Period</th>
<th># of symbolic sequences</th>
<th># of sequences solved</th>
<th>Rate of convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>9</td>
<td>1.00</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>16</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
<td>35</td>
<td>0.97</td>
</tr>
<tr>
<td>8</td>
<td>68</td>
<td>61</td>
<td>0.90</td>
</tr>
<tr>
<td>9</td>
<td>140</td>
<td>123</td>
<td>0.88</td>
</tr>
<tr>
<td>10</td>
<td>273</td>
<td>239</td>
<td>0.88</td>
</tr>
<tr>
<td>11</td>
<td>558</td>
<td>482</td>
<td>0.86</td>
</tr>
<tr>
<td>12</td>
<td>1090</td>
<td>941</td>
<td>0.86</td>
</tr>
<tr>
<td>13</td>
<td>2205</td>
<td>1873</td>
<td>0.85</td>
</tr>
<tr>
<td>14</td>
<td>4356</td>
<td>3674</td>
<td>0.84</td>
</tr>
<tr>
<td>15</td>
<td>8728</td>
<td>7262</td>
<td>0.83</td>
</tr>
<tr>
<td>16</td>
<td>17344</td>
<td>14176</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Table 3
<table>
<thead>
<tr>
<th>Symbolic Sequence</th>
<th>Centre Coordinates</th>
<th>Basin of attraction</th>
<th>Symbolic Sequence</th>
<th>Centre Coordinates</th>
<th>Basin of attraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0</td>
<td>converges</td>
<td>CLRRRRR</td>
<td>–1.99909568</td>
<td>converges</td>
</tr>
<tr>
<td>CL</td>
<td>–1.0</td>
<td>converges</td>
<td>CLRRRL</td>
<td>–1.99181417</td>
<td>converges</td>
</tr>
<tr>
<td>CLR</td>
<td>–1.75487766</td>
<td>converges</td>
<td>CLRRRLR</td>
<td>–1.95370589</td>
<td>converges</td>
</tr>
<tr>
<td>CLL</td>
<td>–0.12256116 ± 0.74486176</td>
<td>converges</td>
<td>CLRRLLL</td>
<td>–1.97717958</td>
<td>converges</td>
</tr>
<tr>
<td>CLRR</td>
<td>–1.94079980</td>
<td>converges</td>
<td>CLRLLRR</td>
<td>–1.76926167 ± 0.05691950i</td>
<td>converges</td>
</tr>
<tr>
<td>CLRL</td>
<td>–1.31070264</td>
<td>converges</td>
<td>CLRRLL</td>
<td>–1.83231520</td>
<td>converges</td>
</tr>
<tr>
<td>CLLRR</td>
<td>–0.15652016 ± 1.03224719i</td>
<td>converges</td>
<td>CLRRLL</td>
<td>–0.92714770</td>
<td>converges</td>
</tr>
<tr>
<td>CRRL</td>
<td>0.28227139 ± 0.53006061i</td>
<td></td>
<td>CLRRRRR</td>
<td>–1.99909568</td>
<td>converges</td>
</tr>
<tr>
<td>CLRRR</td>
<td>–1.98542425</td>
<td>converges</td>
<td>CLRRRL</td>
<td>–1.67406609</td>
<td>converges</td>
</tr>
<tr>
<td>CRRRL</td>
<td>–1.86078252</td>
<td>converges</td>
<td>CLRRLL</td>
<td>–1.40844648 ± 0.13617199i</td>
<td>converges</td>
</tr>
<tr>
<td>CLRRL</td>
<td>–1.25636793 ± 0.38032096</td>
<td>converges</td>
<td>CLRLLL</td>
<td>–1.57488914</td>
<td>converges</td>
</tr>
<tr>
<td>CLRLL</td>
<td>–1.62541372</td>
<td>converges</td>
<td>CLRRRL</td>
<td>–0.22491595 ± 1.11626015i</td>
<td>converges</td>
</tr>
<tr>
<td>CLLRL</td>
<td>–0.19804209 ± 1.10026953i</td>
<td>converges</td>
<td>CLRRRR</td>
<td>–0.20728383 ± 1.11748077i</td>
<td>converges</td>
</tr>
<tr>
<td>CLLRR</td>
<td>–0.04421235 ± 0.98658097</td>
<td>converges</td>
<td>CLRRRL</td>
<td>–1.15751605 ± 1.10900651i</td>
<td>converges</td>
</tr>
<tr>
<td>CLLLL</td>
<td>–0.50434017 ± 0.56276576i</td>
<td>converges</td>
<td>CLRRLR</td>
<td>–1.17457822 ± 1.07142767i</td>
<td>converges</td>
</tr>
<tr>
<td>CRRLR</td>
<td>0.35925922 ± 0.64251373i</td>
<td></td>
<td>CLRLLL</td>
<td>–0.01423348 ± 1.03291477i</td>
<td>converges</td>
</tr>
<tr>
<td>CRRRL</td>
<td>0.37951358 ± 0.33493230i</td>
<td></td>
<td>CLRRLR</td>
<td>–0.27210246 ± 0.84236469i</td>
<td>converges</td>
</tr>
<tr>
<td>CRRRR</td>
<td>–1.99637613</td>
<td>converges</td>
<td>CLRRLL</td>
<td>–1.12749997 ± 0.98746090i</td>
<td>converges</td>
</tr>
<tr>
<td>CLRRRL</td>
<td>–1.96677321</td>
<td>converges</td>
<td>CLRRLL</td>
<td>–1.02819385 ± 0.36137651i</td>
<td>converges</td>
</tr>
<tr>
<td>CLRRRL</td>
<td>–1.77289290</td>
<td>converges</td>
<td>CLRLLL</td>
<td>–0.62353248 ± 0.68106441i</td>
<td>converges</td>
</tr>
<tr>
<td>CLRRLL</td>
<td>–1.90728009</td>
<td>converges</td>
<td>CLRRRR</td>
<td>–0.53082780 ± 0.66828872i</td>
<td>converges</td>
</tr>
<tr>
<td>CLRRRR</td>
<td>–1.28408492 ± 0.42726889i</td>
<td>converges</td>
<td>CLRRRL</td>
<td>–0.62243629 ± 0.42487843i</td>
<td>converges</td>
</tr>
<tr>
<td>CRRLLL</td>
<td>–1.1380066 ± 0.24033240i</td>
<td></td>
<td>CLRRRRR</td>
<td>–0.37600868 ± 0.14474937i</td>
<td>converges</td>
</tr>
<tr>
<td>CRRRLL</td>
<td>–1.47601464</td>
<td>converges</td>
<td>CLRRLR</td>
<td>–0.43237671 ± 0.22675990i</td>
<td>converges</td>
</tr>
<tr>
<td>CRRRRR</td>
<td>–0.21752674 ± 1.11445426i</td>
<td>converges</td>
<td>CRRLLL</td>
<td>–0.37689324 ± 0.67856869i</td>
<td>converges</td>
</tr>
<tr>
<td>CRRRRL</td>
<td>–0.16359826 ± 1.09778064</td>
<td>converges</td>
<td>CRRRR</td>
<td>0.35248253 ± 0.69833723i</td>
<td>converges</td>
</tr>
<tr>
<td>CRRLLL</td>
<td>–0.01557038 ± 1.02049736i</td>
<td>converges</td>
<td>CRRR</td>
<td>0.01489546 ± 0.84814876i</td>
<td>converges</td>
</tr>
<tr>
<td>CRRR</td>
<td>–0.39653457 ± 0.60418181i</td>
<td></td>
<td>CRRLL</td>
<td>0.38653917 ± 0.56932471i</td>
<td>converges</td>
</tr>
<tr>
<td>CRRR</td>
<td>0.44332563 ± 0.37296241i</td>
<td></td>
<td>CRRLLL</td>
<td>0.41291602 ± 0.61480676i</td>
<td>converges</td>
</tr>
<tr>
<td>CRRR</td>
<td>0.38900684 ± 0.21585065i</td>
<td></td>
<td>CRRRL</td>
<td>0.12119278 ± 0.61061169i</td>
<td>converges</td>
</tr>
<tr>
<td>CRRR</td>
<td>0.35989273 ± 0.68476202i</td>
<td></td>
<td>CRRLL</td>
<td>0.01489546 ± 0.84814876i</td>
<td>converges</td>
</tr>
</tbody>
</table>

Table 4
Figure 1
Figure 2