
PHYSICAL REVIEW E AUGUST 1997VOLUME 56, NUMBER 2
Harmonic structure of one-dimensional quadratic maps

G. Pastor,* M. Romera, and F. Montoya
Instituto de Fı´sica Aplicada, Consejo Superior de Investigaciones Cientı´ficas, Serrano 144, 28006 Madrid, Spain

~Received 14 November 1996!

We study here the ‘‘harmonic structure’’ of one-dimensional quadratic maps. The patterns of the structure
can be generated with only one initial datum: the symbolic sequence C of the period-1 superstable orbit. All the
patterns of the structure are F harmonics~Fourier harmonics!. Rules to compose two patterns and rules to
calculate F-harmonics are given. The harmonic-structure matrix which contains all the F harmonics in a very
compact way by means of the harmonic notation is introduced.@S1063-651X~97!04008-7#

PACS number~s!: 05.45.1b, 47.20.Ky, 47.52.1j
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I. INTRODUCTION

As is well known, all the one-dimensional~1D! quadratic
maps are equivalent because they are topologically conju
@1–3#. This means that any 1D quadratic map can be use
study the others. Therefore we can choose one of them
extend the result to the other ones. For this purpose,
normally use the mapxn115xn

21c, which we call the real
Mandelbrot map. But, as we showed in a recent work@4#, to
study 1D quadratic maps throughxn115xn

21c we made use
of a subtlety: we use the real axis neighborhood~the an-
tenna! of the Mandelbrot set, which offers graphic adva
tages. Indeed, the bifurcation diagram has been the no
tool used to analyze the chaotic or periodic behavior of
quadratic maps, but not too much can be seen with this t
If we draw the antenna of the Mandelbrot set with the esc
line method@4# much more graphic information can be o
tained, because we manage midgets~tiny copies of the Man-
delbrot set!, cardioids, disks, etc., that we can place a
whose periods can be directly measured. However, we m
take into account that only the intersection of the Mandelb
set and the real axis has a sense in the study of the
Mandelbrot map. Therefore it must be clear that when
sporadically talk about a midget~of the Mandelbrot set an
tenna! we refer to a window~of the xn115xn

21c map!, and
when we talk about cardioids or disks~hyperbolic compo-
nents of the Mandelbrot set antenna, sometimes sim
called components! we refer ~in the xn115xn

21c map! to
superstable periodic orbits which are born, respectively, fr
a tangent bifurcation or a pitchfork bifurcation.

The aim of this work is to contribute to the ordering in 1
quadratic maps. We have already published a paper abo
@5#, where a considerable effort was made to order the
perstable periodic orbits. However, that work is only a d
scriptive and approximate approach to the global order
Now, in this work, we accomplish a rigorous treatment of t
ordering structure. Indeed, as we shall see later, we use
symbolic sequences instead of periods used in@5#, we intro-
duce the harmonic structure which is rigorously calculat
we extend the concept of the harmonic structure to a mid
antenna and to a rightward map~like the logistic map!, and
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we introduce the harmonic-structure matrix, a way to rep
sent compactly the symbolic sequences of F-harmonics.
these points, which constitute almost the total of this wo
are indeed important contributions with regard to our form
work about ordering@5# or others of our works.

As we pointed out before, when we defined a supersta
orbit in our former work of Ref.@5#, only the period was
taken into account; but, that is not enough because sev
different superstable orbits can have the same period. W
rigorously defines each orbit is its symbolic sequence~or
pattern! @6–8#. In this work each superstable orbit is alwa
associated to its symbolic sequence. According to Metro
lis, Stein, and Stein~MSS! @6# a p-periodic superstable orbi
has a symbolic sequence withp21 letters ~L’s and R’s!
properly combined. But a pattern corresponding to an o
of period p with p21 letters can be misleading; and,
avoid that, Zheng and Hao@7# and Schroeder@8# write the
symbolic sequence by adding a C at the end@7# or at the
beginning@8# of the MSS pattern. We normally use the la
procedure to write a symbolic sequence. The meanings o
letters of a pattern are center~C!, left ~L!, and right~R!, and
they indicate the position of the iterate with regard to t
critical point of the map. So, the symbolic sequence~pattern!
of the period-3 superstable orbit of the real Mandelbrot m
located atc521.754 877 666 . . . , isCLR.

The importance of Misiurewicz points@9–11# as ‘‘sepa-
rators’’ to order 1D quadratic maps was reported by us@5#.
We showed there that the band-merging points are M
urewicz points, but nothing was said about their symbo
sequences which were introduced later by us in two m
recent papers@12,13#. Here, Misiurewicz points are not onl
reported as separators but their symbolic sequences are
orously calculated by means of the F harmonics.

The search for order in chaos was early carried
by Sharkovsky @14# ~see Sharkovskyet al. @15#!. Let
f l : x→lx(12x) be the logistic map. Denote byl@n#
the least value of the parameterl for which the map
f l possesses a cycle with periodp. The Sharkovsky theorem
~@15#, p. 66! says that l@1#<l@2#<l@4#<•••<l@532#<
l@332#<•••l@5#<l@3#.

The Sharkovsky theorem gives a clear ordering of the fi
appearance superstable periodic orbits~see Fig. 1!, but with-
out taking into account either the symbolic sequence of e
periodic orbit or the origin of each periodic orbit. On th
contrary, the outstanding work of MSS@6# uses both the
1476 © 1997 The American Physical Society
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56 1477HARMONIC STRUCTURE OF ONE-DIMENSIONAL . . .
symbolic sequence and the pattern generation; however,
difficult to see any ordering there~see Fig. 2 where we
graphically show, as we did in@5#, the MSS superstable pe
riodic orbit generation!. In the present work we shall mak
an effort to order superstable orbits in the clearest poss
way, at the same time as we show how every superst
orbit is generated and what its symbolic sequence is. H
ever, in the same way as the Sharkovsky ordering only tr
a part of the total set of the superstable orbits, the first
pearance superstable orbits, we only treat here another
of this set, the last appearance superstable orbits.

In this work we shall obtain what we call ‘‘the harmon
structure’’ of a 1D quadratic map which results from t
generation of all the ‘‘genes,’’ i.e., the superstable orbits
the period-doubling cascade. This harmonic structure is
sential for understanding the way the superstable orbits
ordered, and it is constituted by a special type of patte
that we call the structural patterns. This harmonic struct
obtained from the genes is a way of seeing the ordering
shows rigorously the connection between each per
doubling cascade component~gene! and the corresponding
chaotic band. Different models of ordering in 1D quadra
maps can be given~we are working in several! and each one
has its advantages and disadvantages, but all of them fo
the same procedure: filling of the harmonic structure.

We can obtain all the structural patterns by starting
only from the pattern C of the period-1 superstable or
Beginning from this pattern C, all the patterns of the perio
doubling cascade and the patterns of the last appearanc
perstable orbits of the chaotic bands are generated. We
clearly see that the origin of each period-2n chaotic bandBn
is the diskn of the period-doubling cascade, a disk of peri
2n which is the ‘‘gene’’Gn .

FIG. 1. A sketch of the Sharkovsky theorem for the logistic m
xn115lxn(12xn). First appearance superstable orbits for perio
p<20 are shown.
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In this article we use the F harmonics~from Fourier! that
were introduced by us@13# instead of the MSS-harmonic
~from Metropolis, Stein, and Stein!. In the same way as the
limit of the F harmonics of a cardioid pattern is the tip of th
midget that is born in this cardioid@16#, we shall see that the
limit of the F harmonics of the disk patternn of the period-
doubling cascade whose period is 2n is the Misiurewicz
point mn that separates the chaotic bandsBn21 andBn .

As we shall see, there are two types of 1D quadra
maps. We shall introduce two types of composition ru
~leftward and rightward rules! in each one. The rules to ob
tain F harmonics~and F antiharmonics! are simplified cases
of the previous rules, and in both cases obey very simple
mnemonic rules.

Finally we shall introduce the harmonic-structure mat
which, in only one formula, shows all the F harmonics of t
harmonic structure of a 1D quadratic map. For that, we
the harmonic notation that allows us to put the symbo
sequences of the F harmonics in a very compact way. T
new harmonic-structure matrix allows us to see at a gla
all the structural patterns; therefore this matrix considera
helps to simplify the always complex vision of the chaos

II. COMPOSITION RULES

Let us consider the real Mandelbrot map. As we kno
from @13#, a patternP has even ‘‘L parity’’ if it has an even
number of L’s, and has odd ‘‘L parity’’ otherwise. L parity i
a concept similar to R parity, introduced by MSS@6# for the
logistic map.

After this, let us introduce the composition of two pa
terns, an augendP1 and an addendP2. The patternP2 can be
added to the patternP1 in two different ways: toward the lef
and toward the right. Let us see the first one.

Definition 1.~Leftward rule! Let P1 be the pattern of the
augend and letP2 be the pattern of the addend to be add
toward the left toP1. The composition pattern is formed b
appendingP2 to P1 and changing the C ofP2 to L ~or R! if
the L parity ofP1 is even~or odd!.

As a mnemonic rule, we call this composition rule th
‘‘lero’’ rule ~from L if even and R if odd!. Since this addition

has direction~leftward in this case! we use the symbol1←.

For example, ifP15CLR andP25CL thenP11
←P25CLR

1
← CL5CLR2L, where R2 means RR. However, for ou

convenience, we sometimes denote CLR1
←CL as CLRCQ L,

which is easier to use.
The obtaining of F harmonics of a patternP that we saw

s

FIG. 2. A sketch of the successive application of the Metropolis, Stein, and Stein theorem in the logistic mapxn115lxn(12xn) for
p<10. Symbolic sequences for periodsp<6 are shown.
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1478 56G. PASTOR, M. ROMERA, AND F. MONTOYA
in @13# is a particular case of the previous definition whe
P15P25P, as can be seen as follows.

Definition 2.Let P be a pattern. The first F harmonic o
P,HF

(1)(P), is formed by appendingP to itself and changing
the second C to L~or R! if L parity of P is even~or odd!.
The second F harmonic ofP,HF

(2)(P), is formed by append-
ing P to HF

(1)(P) and changing the second C to L~or R! if L
parity of HF

(1)(P) is even~or odd!, and so on.
In this definition, we have changed the Schroeder rule@8#

for the calculation of the patterns of MSS harmonics in or
to calculate the patterns of F harmonics@13#. As we shall see
afterwards, we generate all the structural patterns by the
use of this rule of F harmonics.

Let us see now the second type of composition, the a
tion toward the right.

Definition 3.~Rightward rule.! Let P1 be the pattern of the
augend and letP2 be the pattern of the addend to be add
toward the right toP1. The composition pattern is formed b
appendingP2 to P1 and changing the C ofP2 to R ~or L! if
the L parity ofP1 is even~or odd!.

As a mnemonic rule, we call this composition rule t
‘‘relo’’ rule ~from R if even and L if odd!. Since this addition

has direction~rightward in this case! we use the symbol1→.
For example, if P15CLR and P25CL then

P11
→P25CLR1

→CL5CLRL2, where L2 means LL. How-

ever, for our convenience, we sometimes denote CLR1
→CL

as CLRCW L, which is easier to use.
The obtaining of F antiharmonics of a patternP that we

saw in @13# is a particular case of the previous definitio
whereP15P25P, as can be seen as follows.

Definition 4.Let P be a pattern. The first F antiharmon
of P,AF

(1)(P), is formed by appendingP to itself and chang-
ing the second C to R~or L! if L parity of P is even~or odd!.
The second F antiharmonic ofP,AF

(2)(P), is formed by ap-
pendingP to AF

(1)(P) and changing the second C to R~or L!
if L parity of AF

(1)(P) is even~or odd!, and so on.
Just like a MSS antiharmonic is a purely formal constru

tion @6# and never corresponds to a periodic orbit, an F a
harmonic is also a purely formal construction and never c
responds to a periodic orbit either. But, although they h
no real existence, they act to generate new patterns whe
want to fill up the harmonic structure, as we plan to show
works we are preparing about different models of patt
generation. However, in the case of the structural patte
that we are treating here only F harmonics are present.

By speaking according to the Mandelbrot set terminolo
we have two types of structural components: disks and
dioids. In the following figures a disk is depicted as a f
circle, and a cardioid as a circle with a full half part and
empty half part. As can be seen in all the figures, the firs
harmonic of a component is a disk~belonging to the period-
doubling cascade and is generated by means of a pitch
bifurcation!, all the other F harmonics are cardioids~belong-
ing to the chaotic region and are generated by mean
tangent bifurcations!, and the limit of the F harmonics of
component is a Misiurewicz point.

III. THE HARMONIC STRUCTURE
OF 1D QUADRATIC MAPS

Let us see how to generate the chaotic bands in the
Mandelbrot map by beginning just at the origin, i.e., at t
r
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period-1 superstable orbit of symbolic sequence C. For
purpose, we shall be assisted by Fig. 3, where in the up
parts we depict a sketch of the F harmonics where peri
and symbolic sequences are shown and in the lower part
depict the corresponding Mandelbrot set antenna zones
means of the escape lines method@4#. In ~a! we show the F
harmonics of C obtained in accordance with the lero rule.
form the first F harmonic of C we add a C to the C,i.e., we
write CC and we change the second C into a L, since th
parity of C is even. Therefore the first F harmonic of C

HF
(1)(C)5C1Q C5CCQ 5CL. To form the second F harmoni

of C we add a C to thefirst one, i.e., we write CLC and we
change the second C into a R, since the L parity of CL
odd, and we obtainHF

(2)(C)5CLR.
By applying the same procedure, we obtain that the th

and fourth F harmonics of C areHF
(3)(C)5CLR2 and

HF
(4)~C!5CLR3. As is well known @8#, CLR,CLR2,CLR3,

. . . (CRL,CRL2,CRL3, . . . , in the logistic map! are the
symbolic sequences of the last appearance superstable o
~although in the cases of CL and CLR they are also fi
appearance superstable orbits since there is only one su
stable orbit of period 2 and only one of period 3!. As we
already showed@16#, the limit of the F harmonics of a pat
tern can be calculated. In this case the limitHF

(`)(C) is the
Misiurewicz point with preperiod 2 and period 1,m05M2,1,
whose symbolic sequence is (CL)R. In the Mandelbrot
this point is the main antenna end, tip~C! @16#, whose param-
eter value isc522. In the real Mandelbrot map this point i
the boundary crisis point~according to Grebogiet al. @17#!.
Therefore the F harmonic development of C goes over
whole antenna, from the beginning to the end.

We started from the period-1 superstable orbit C placed
the periodic region or Feigenbaum region. The first F h
monic of C is the period-2 superstable orbit of the perio
doubling cascade. All the other F harmonics of C are sup
stable orbits placed in the period-1 (20) chaotic bandB0 and
are the last appearance superstable orbits of this band. I
consider the period-20 superstable orbit C as a ‘‘gene’’G0,
then the F harmonics of the geneG0 generate the period-20

chaotic bandB0. However, a period-21 superstable orbit
placed in the periodic region is also generated; we shall
this the ‘‘bridge pattern.’’ Let us see what happens when t
orbit is used as a new geneG1.

Let us see now Fig. 3~b! where we show the harmonics o
G15 CL ~the former bridge pattern!. To form its F harmon-
ics we add CL to the previous one and we change the sec
C into a L or a R, inaccordance with the lero rule. So, w
obtain that the first, second, third, and fourth F harmonics
G1 are HF

(1)(G1)5CLRL, HF
(2)(G1)5CLRL3, HF

(3)(G1)5

CLRL5, andHF
(4)(G1)5CLRL7. The limit of these harmon-

ics is the Misiurewicz pointm15M3,15(CLR)L, placed in
c521.543 689 012 . . . @12,13#, that separates the period-
chaotic bandB0 and the period-2 chaotic bandB1. The first
harmonic generated from CL is the pattern CLRL of period
(22), which corresponds to the second superstable orbi
the period-doubling cascade of the periodic region of
which we called a bridge pattern, and all the other F harm
ics of CL are superstable orbits placed in the period-2 (1)
chaotic bandB1, and are the last appearance superstable
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FIG. 3. A sketch of the F harmonics of the first four superstable orbits of the period-doubling cascade in the real Mandelbrot m
harmonic generation of last appearance superstable patterns of chaotic bands is shown.~a! Period-1 chaotic bandB0; ~b! period-2 chaotic
bandB1; ~c! period-4 chaotic bandB2; ~d! period-8 chaotic bandB3.
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bits of this band. Again, if we consider CL as a geneG1, we
have that the F harmonics of the geneG1 generate the
period-21 chaotic bandB1 ~and a bridge pattern that will b
the new geneG25CLRL).

Let us see now Fig. 3~c! where we show the F harmon
ics of the previous bridge pattern, the geneG25CLRL.
The first, second, third, and fourth harmonics ofG2 are

HF
(1)~G2)5CLRL3RL, HF

(2)(G2)5CLRL3RL
3
, HF

(3)~G2)5

CLRL3RL
5
, and HF

(4)(G2)5CLRL3RL
7
, the first a bridge

pattern in the periodic region and the others superstable
bits placed in the period-22 chaotic bandB2. ~We write n

times RL asRL
n

, because we only use brackets in Mis
urewicz point preperiods.! The limit of these harmonics is
the Misiurewicz pointm25M5,2

(1)5(CLRL2)LR @12,13#, that
separates the period-2 chaotic bandB1 and the period-4 cha
otic band B2. Therefore the F harmonics of the geneG2
generate the period-22 chaotic bandB2, and a new bridge
patternG35CLRL3RL that is the gene of the next chaot
band.

Finally, let us see Fig. 1~d!, where we show the F har
monics of the previous bridge pattern of period 8 (23), that
is, the geneG35CLRL3RL. A new bridge pattern of period
16 in the periodic region, that is, the geneG4, and the last
r-

appearance superstable orbits of the period-8 chaotic b
B3 are generated. The limit of these superstable orbits is
Misiurewicz pointm35M9,4

(1) @12# that separates the period-
chaotic bandB2 and the period-8 chaotic bandB3.

Generalizing, the F harmonics of the diskn of the period-
doubling cascade, the geneGn , generates the last appearan
cardioids of the period-2n chaotic bandBn , and a bridge disk
of the period-doubling cascade, the geneGn11. Likewise,
HF

(`)(Gn) is a Misiurewicz pointmn5M2i11,2i 21 @5#, a pri-
mary separator~or band-merging point! of the chaotic bands
Bn21 andBn .

This double procedure~disks and chaotic band gener
tion! continues indefinitely, and both meet in the Feige
baum point @18#, periodic disks on the right and chaot
bands on the left.

Every pattern of the period-doubling cascade is
gene of the corresponding chaotic band. The set of
F harmonics of all the genes is what we call ‘‘the harmon
structure’’ and is schematically shown in Fig. 4. The p
terns of the harmonic structure are called structural patte
and all of them are F harmonics.HF

(1)(Gn) is always a disk,
HF

(m)~Gn) where 1,m,` is a cardioid, andHF
(`)(Gn) is a

Misiurewicz point.
What we call here ‘‘the harmonic structure’’ was in pa
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FIG. 4. A sketch of the harmonic structure of the real Mandelbrot map. The F harmonics of each period-doubling cascade su
orbit, the geneGn , generate the corresponding chaotic bandBn and the Misiurewicz pointmn that separates the chaotic bandsBn21 and
Bn .
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already seen in a previous work@5#, but it is here where the
harmonic structure has rigorously been calculated. In Fig
we can see the periodic region and the chaotic region s
rated by the Feigenbaum point. Likewise, the chaotic reg
is divided in an infinity of chaotic bandsBn , separated by
Misiurewicz points called separators,mn , 0<n<`. Each
4
a-
n

structural pattern and each separator is determined by s
ing with the only datum of the pattern C, and by applying t
leftward rule to the successive genes. Structural patterns
placed in the figure fromc50 to c522 according to the
value of their parameter, and the greater the period of
superstable orbit the lower the position.
ucture is
FIG. 5. A sketch of the harmonic structure of the antenna of the midget CLR of the Mandelbrot set antenna. This harmonic str
equivalent to the harmonic structure of the whole Mandelbrot set antenna.
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TABLE I. Parity and rules for each type of 1D quadratic map.

Type of 1D quadratic map Leftward map Rightward map

Parity L parity R parity
Rule for F harmonics leftward~lero! rule rightward~relo! rule
Rule for F antiharmonics rightward~relo! rule leftward~lero! rule
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IV. THE HARMONIC STRUCTURE OF THE ANTENNA
OF A MIDGET

Let us again use the Mandelbrot set terminology, beca
here it is easier to speak about midgets than about windo
In the Mandelbrot set antenna, every midget is a tiny copy
the whole Mandelbrot set. Therefore the antenna of a mid
is a tiny copy of the antenna of the Mandelbrot set~obvi-
ously we suppose we are always in the real part of the M
delbrot set antenna!. Hence every antenna of a midget shou
have the same harmonic structure as the harmonic struc
of the antenna of the whole Mandelbrot set.

In fact, let us consider, for example, the midget a
tenna that is born in the period-3 cardioid CLR~see Fig. 5,
where the harmonic structure of the midget CLR is show!.
The cardioid CLR can be considered the geneG0(CLR). The
first, second, third, etc., F harmonics of CLR a
HF

(1)
„G0(CLR)…5CLR2LR, HF

(2)
„G0~CLR!…5CLR2LRL2R,

HF
(3)
„G0(CLR)…5CLR2LRL

2
LR, . . . , which finish in

the Misiurewicz point m0(CLR)5HF
(`)

„G0(CLR)…5M4,3
(1)

5(CLR2)LRL that is the end of the CLR midget antenn
tip~CLR!, placed inc521.790 327 491 . . . @16#. The first F
harmonic of CLR is a bridge pattern in the periodic region
the midget, and all the others are the last appearance ca
ids of the period-3 (3320) chaotic bandB0(CLR). There-
fore the F harmonics of the geneG0(CLR) generate the par
tial harmonic structure of the chaotic bandB0(CLR) and the
se
s.
f
et

n-

re

-

f
io-

tip of the midget CLR, tip~CLR!. Starting from the bridge
disk G1(CLR)5CLR2LR of period 6, the last
appearance cardioids of the period-6 (3321) chaotic band
B1(CLR) are generated, and a new bridge pattern
period 12 that will be the geneG2(CLR) of the
period-12 (3322) chaotic band B2(CLR). Likewise,
HF

(`)(G1(CLR))5m1(CLR)5M7,3
(1)5(CLR2LRL)LR2 that

is a Misiurewicz point that separates the chaotic ba
B0(CLR) andB1(CLR). And so on.

In general, the F harmonics of the diskn of the period-
doubling cascade of CLR, the geneGn(CLR), generate the
last appearance components of the chaotic bandBn(CLR),
and also a new gene Gn11(CLR). Besides,
HF

(`)
„Gn(CLR)…5mn(CLR) is the Misiurewicz point that

separates the chaotic bandsBn21(CLR) andBn(CLR). The
set of the F harmonics of all the genes of CLR is the h
monic structure of CLR; and, as can clearly be seen in Fig
it is equivalent to the harmonic structure of the whole Ma
delbrot set antenna.

V. THE HARMONIC STRUCTURE OF ANY TYPE
OF 1D QUADRATIC MAP

There are two types of 1D quadratic maps: leftward ma
and rightward maps. In the case of a leftward map, when
go through the period-doubling cascade orbits from low
riods to great periods, we move towards the left. However
FIG. 6. A sketch of the harmonic structure of a rightward 1D quadratic map.
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1482 56G. PASTOR, M. ROMERA, AND F. MONTOYA
the case of a rightward map, when we go through the per
doubling cascade orbits from low periods to great perio
we move towards the right. Within the same type of 1
quadratic maps, the same superstable orbits have the
symbolic sequences. In the case of different types of
quadratic maps, the symbolic sequence of an orbit is
tained from the symbolic sequence of the same orbit of
other type by interchanging the L’s and R’s. We can see
in MSS @6# and in our works L’s and R’s are interchange
because MSS use the logistic map, a rightward map, and
use the real Mandelbrot map, a leftward map.

Hence, if we wanted to obtain the harmonic structure o
rightward map, as the logistic map, definitions 1–4 that w
given for a leftward map have to be changed. In accorda
with all we saw before, in leftward maps the parity to
used is the L parity and the rule used to calculate the
harmonics is the leftward~lero! rule. Likewise, in rightward
maps the parity to be used is the R parity and the rule use
calculate the F harmonics is the rightward~relo! rule. There-
fore F harmonics are always bound to the same letter.
leftward F harmonics are bound to the L: leftward maps
parity, and leftward~lero! rule; and rightward, F harmonic
are bound to the R: rightward maps, R parity, and rightw
~relo! rule. The structural patterns are F harmonics, and
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can go from the origin~the first periodic orbit with the sym-
bolic sequence C! to each structural pattern only through
harmonics. This means that in every step we always have
same direction as the direction of the type of map we
working with. That is not the case of F antiharmonics whe
the direction of the map and the rule are not the same.
this is shown in Table I, where we show the parity and t
rule that have to be applied to calculate F harmonics~and F
antiharmonics! for each type of 1D quadratic map.

In Fig. 6 we have depicted the harmonic structure o
rightward map. Indeed, when we go through the perio
doubling cascade orbits from low periods to great perio
we move towards the right, against what happened in l
ward maps, where we moved towards the left. Likewise,
corresponding structural patterns have interchanged their
and R’s with regard to leftward maps.

VI. THE HARMONIC STRUCTURE MATRIX

We can give a matrix, the harmonic-structure matrix,
compactly represent all the F harmonics of the harmo
structure. For that, we use what we call the harmonic no
tion that allows us to put in a very compact way the symbo
sequences of the F harmonics. This matrix is
„HF
~ j !~Gi !…5S G0 HF

~1!~G0! HF
~2!~G0! . . . HF

~ j !~G0! . . . m0

G1 HF
~1!~G1! HF

~2!~G1! . . . HF
~ j !~G1! . . . m1

G2 HF
~1!~G2! HF

~2!~G2! . . . HF
~ j !~G2! . . . m2

. . . . . . . . . . . . . . . . . . . . .

Gi HF
~1!~Gi ! HF

~2!~Gi ! . . . HF
~ j !~Gi ! . . . mi

. . . . . . . . . . . . . . . . . . . . .

G` HF
~1!~G`! HF

~2!~G`! . . . HF
~ j !~G`! . . . m`
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a matrixi 3 j where 0< i<` and 0< j <`. The first column
@ j 50, becauseGi5HF

(0)(Gi)# is the gene column which is
constituted by the superstable orbits of the period-doub
cascade that finishes in the Feigenbaum pointG` 5F. The
second column, the first F harmonics of a gene, has the
lowing property:HF

(1)(Gi)5Gi 11, i.e., the first F harmonic
of a gene is the next gene. The last column (j 5`) is the
band-merging points columnmi because it is constituted b
the Misiurewicz points that merge~or separate! two succes-
sive chaotic bands. This band-merging points column a
finishes in the Feigenbaum pointm`5F. Since the first and
the last elements of the last row finish in the Feigenba
point F, all the elements of this row have to be F.

Each rowi has a first element, forj 50, Gi5HF
(0)(Gi) ,

which is the gene of this row, a second element, forj 51,
which is the gene of the next row, and all the other eleme
for 1, j ,`, which are the last appearance superstable or
of the chaotic bandBi. The last element, forj 5`, is the
band-merging pointmi of the bandsBi 21 andBi .

The general termHF
( j )(Gi) is the j th F harmonic of the

geneGi, and can easily be calculated by applying the cor
g
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sponding rule according to the type of 1D quadratic m
The number of letters ofGi is k32i , wherek is the number
of letters ofG0. Therefore the number of letters of the pa
tern HF

( j )(Gi) is ( j 11)k32i .
For example, in the case of the real Mandelbrot m

the pattern of the second last appearance superstable
of the chaotic bandB1 of the window CLR (i 51,
j 53, k53! has 24 letters. The harmonic notation of the or
is HF

(3)
„G1~CLR!…, whose symbolic sequence

CLR2LRL2R2LR2
4
LR. The parameter value, c52

1.781 870 007 610 51 . . . , is obtained by means of the
method given by Kaplan@19#.

VII. CONCLUSIONS

The real axis neighborhood of the Mandelbrot set is u
to study the harmonic structure of a 1D quadratic map.
base this study in the F harmonics@13# instead of MSS har-
monics@6#, which are clearly different.

We introduce composition rules for the addition of pa
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terns ~towards the left and towards the right!, and rules to
obtain F harmonics~and F antiharmonics! which are simpli-
fications of the previous ones.

The F harmonics of thenth superstable orbit of the
period-doubling cascade~the geneGn whose period is 2n)
generate the (n11)th superstable orbit of the period
doubling cascade~the geneGn11 whose period is 2n11) and
the last appearance superstable orbits of the period-2n cha-
otic bandBn . The limit of F harmonics ofGn is the Misi-
urewicz pointmn that separates the period-2n21 chaotic band
Bn21 and the period-2n chaotic bandBn . Therefore the se
of F harmonics of all the superstable orbits of the perio
doubling cascade gives us the harmonic structure of the
quadratic map. The harmonic structure has the per
doubling cascade separated from the chaotic region by
Feigenbaum point, and the chaotic bands separated by M
urewicz points.

The patterns of the harmonic structure are the struct
patterns. All the structural patterns can be obtained star
from only one datum: the period-1 superstable orbit of sy
bolic sequence C.

The harmonic structure of a midget has also been
ra
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tained. The harmonic structure of each midget is similar
the harmonic structure of the period-1 superstable orbit
symbolic sequence C.

For all the generation process of new structural patte
we use simple mnemonic rules. There are two types of
quadratic maps: leftward maps and rightward maps. To
culate the F harmonics of leftward maps we use the L pa
and the leftward rule~lero rule!, and to calculate the F har
monics of rightward maps we use the R parity and the rig
ward rule~relo rule!.

The harmonic-structure matrix which contains all the
harmonics in only one formula has been introduced. T
harmonic notation that allows us to write the symbolic s
quences of the F harmonics in a very compact way has b
used in the harmonic-structure matrix.
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