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Harmonic structure of one-dimensional quadratic maps
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We study here the “harmonic structure” of one-dimensional quadratic maps. The patterns of the structure
can be generated with only one initial datum: the symbolic sequence C of the period-1 superstable orbit. All the
patterns of the structure are F harmoni{E®urier harmonics Rules to compose two patterns and rules to
calculate F-harmonics are given. The harmonic-structure matrix which contains all the F harmonics in a very
compact way by means of the harmonic notation is introdu®t063-651X%97)04008-7

PACS numbes): 05.45+b, 47.20.Ky, 47.52¢]

I. INTRODUCTION we introduce the harmonic-structure matrix, a way to repre-
sent compactly the symbolic sequences of F-harmonics. All
As is well known, all the one-dimensionélD) quadratic  these points, which constitute almost the total of this work,
maps are equivalent because they are topologically conjugatge indeed important contributions with regard to our former
[1-3]. This means that any 1D quadratic map can be used toork about ordering5] or others of our works.
study the others. Therefore we can choose one of them and As we pointed out before, when we defined a superstable
extend the result to the other ones. For this purpose, werbit in our former work of Ref[5], only the period was
normally use the mag,, ;=x2+c, which we call the real taken into account; but, that is not enough because several
Mandelbrot map. But, as we showed in a recent wdik to d_lfferent superstable orbits can h_ave the same period. What
study 1D quadratic maps througn+1=xﬁ+c we made use rigorously defines _each orbit is its symbolic S(_eq_uelfxme
of a subtlety: we use the real axis neighborhdehe an- pattern [6—8]. In this work each superstable orbit is always

tenna of the Mandelbrot set, which offers graphic adVam_assomated to its symbolic sequence. According to Metropo-

tages. Indeed, the bifurcation Qiagram .ha.s been t_he normlﬁ 'sS;eI;]Qriggliiteslggﬂusesn)cf]vag]—p f”l(;?tlgrzléfzrséazleR?éblt
tool usgd to analyze the chaotic or periodic beha}wor .of 1D roperly combined. But a pattern corresponding to an orbit
quadratic maps, but not too much can be seen with this too} period p with p—1 letters can be misleading; and, to
If we draw the antenna of the Mandelbrot set with the escapg,oiq that, Zheng and Ha¥] and Schroedef8] write the
line method[4] much more graphic information can be ob- symbolic sequence by addjra C at the end7] or at the
tained, because we manage middétsy copies of the Man-  peginning[8] of the MSS pattern. We normally use the last
delbrot sel, cardioids, disks, etc., that we can place andprocedure to write a symbolic sequence. The meanings of the
whose periods can be directly measured. However, we musétters of a pattern are cent@®), left (L), and right(R), and
take into account that only the intersection of the Mandelbrothey indicate the position of the iterate with regard to the
set and the real axis has a sense in the study of the regtitical point of the map. So, the symbolic sequefpattern
Mandelbrot map. Therefore it must be clear that when weof the period-3 superstable orbit of the real Mandelbrot map,
sporadically talk about a midgépf the Mandelbrot set an- |ocated atc=—1.754 877 66. . ., iSCLR.
tenna we refer to a window(of the X, 1=x3+c map, and The importance of Misiurewicz poinf®—11] as “sepa-
when we talk about cardioids or diskByperbolic compo- rators” to order 1D quadratic maps was reported by %is
nents of the Mandelbrot set antenna, sometimes simplye showed there that the band-merging points are Misi-
called componenjswe refer (in the xn+1=xﬁ+c map to  urewicz points, but nothing was said about their symbolic
superstable periodic orbits which are born, respectively, fronsequences which were introduced later by us in two more
a tangent bifurcation or a pitchfork bifurcation. recent papergl2,13. Here, Misiurewicz points are not only
The aim of this work is to contribute to the ordering in 1D reported as separators but their symbolic sequences are rig-
guadratic maps. We have already published a paper aboutdrously calculated by means of the F harmonics.
[5], where a considerable effort was made to order the su- The search for order in chaos was early carried out
perstable periodic orbits. However, that work is only a de-by Sharkovsky [14] (see Sharkovskyet al. [15]). Let
scriptive and approximate approach to the global orderingf, : Xx—AXx(1—x) be the logistic map. Denote b¥[n]
Now, in this work, we accomplish a rigorous treatment of thethe least value of the parametar for which the map
ordering structure. Indeed, as we shall see later, we use hefg possesses a cycle with peripdThe Sharkovsky theorem
symbolic sequences instead of periods use&]nwe intro-  ([15], p. 66 says that \[1]<A[2]s\[4]<---<\[5X2]<
duce the harmonic structure which is rigorously calculated)\[3X2]<---\[5]<\[3].
we extend the concept of the harmonic structure to a midget The Sharkovsky theorem gives a clear ordering of the first
antenna and to a rightward mdlike the logistic map, and  appearance superstable periodic ortsee Fig. 1, but with-
out taking into account either the symbolic sequence of each
periodic orbit or the origin of each periodic orbit. On the
*Electronic address: gerardo@iec.csic.es contrary, the outstanding work of MS[®] uses both the
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In this article we use the F harmonitfsom Fouriep that
were introduced by u$l3] instead of the MSS-harmonics
3.2 (from Metropolis, Stein, and Steinin the same way as the
limit of the F harmonics of a cardioid pattern is the tip of the
midget that is born in this cardioid 6], we shall see that the
limit of the F harmonics of the disk pattemof the period-
doubling cascade whose period i§ & the Misiurewicz
point m, that separates the chaotic ba®ls ; andB,,.

18 As we shall see, there are two types of 1D quadratic
maps. We shall introduce two types of composition rules
(leftward and rightward rulgsn each one. The rules to ob-
tain F harmonicdand F antiharmonigsare simplified cases

FIG. 1. A sketch of the Sharkovsky theorem for the logistic mapgf the previous rules, and in both cases obey very simple and
Xn+1=AXn(1—X,). First appearance superstable orbits for periodsmnemonic rules.
p=20 are shown. Finally we shall introduce the harmonic-structure matrix
which, in only one formula, shows all the F harmonics of the
Rarmonic structure of a 1D quadratic map. For that, we use
the harmonic notation that allows us to put the symbolic
sequences of the F harmonics in a very compact way. This
new harmonic-structure matrix allows us to see at a glance
| the structural patterns; therefore this matrix considerably
elps to simplify the always complex vision of the chaos.

symbolic sequence and the pattern generation; however, it
difficult to see any ordering therésee Fig. 2 where we
graphically show, as we did if5], the MSS superstable pe-
riodic orbit generation In the present work we shall make
an effort to order superstable orbits in the clearest possibl
way, at the same time as we show how every superstab
orbit is generated and what its symbolic sequence is. How-
ever, in the same way as the Sharkovsky ordering only treats

a part of the total set of the superstable orbits, the first ap- Il. COMPOSITION RULES
pearance superstable orbits, we only treat here another part )
of this set, the last appearance superstable orbits. Let us consider the real Mandelbrot map. As we know

In this work we shall obtain what we call “the harmonic from[13], a patternP has even “L parity” if it has an even
structure” of a 1D quadratic map which results from the number of L's, and has odd “L parity” otherwise. L parity is
generation of all the “genes,” i.e., the superstable orbits of2 concept similar to R parity, introduced by M&§ for the
the period-doubling cascade. This harmonic structure is edogistic map. . -
sential for understanding the way the superstable orbits are After this, let us introduce the composition of two pat-
ordered, and it is constituted by a special type of patterng€rns, an augen#t; and an adden®,. The patterrP, can be
that we call the structural patterns. This harmonic structur@dded to the patterR; in two different ways: toward the left
obtained from the genes is a way of seeing the ordering thand toward the right. Let us see the first one.
shows rigorously the connection between each period- Definition 1.(Leftward rulg Let P, be the pattern of the
doubling cascade componefgend and the corresponding augend and leP, be the pattern of the addend to be added
chaotic band. Different models of ordering in 1D quadratictoward the left toP;. The composition pattern is formed by
maps can be givetwe are working in severphnd each one appendingP, to P, and changing the C d?, to L (or R) if
has its advantages and disadvantages, but all of them follo#he L parity of P, is even(or odd.
the same procedure: filling of the harmonic structure. As a mnemonic rule, we call this composition rule the

We can obtain all the structural patterns by starting out'lero” rule (from L if even and R if odgl Since this addition

only from the pattern C of the period-1 superstable orbithas direction(leftward in this casewe use the symbof- .
Begm.nlng from this pattern C, all the patterns of the perlod—For example, ifP;=CLR andP,=CL thenP,F P,=CLR
doubling cascade and the patterns of the last appearance su- 2
perstable orbits of the chaotic bands are generated. We shafl CL=CLR‘L, where R means RR. However, fo{ our
clearly see that the origin of each perioti-¢haotic bandB, convenience, we sometimes denote GERL as CLRQ.,
is the diskn of the period-doubling cascade, a disk of periodwhich is easier to use.

2" which is the “gene”G,,. The obtaining of F harmonics of a pattethat we saw

R RLRZL RL2RL

FIG. 2. A sketch of the successive application of the Metropolis, Stein, and Stein theorem in the logistig,map x,(1—x,) for
p=<10. Symbolic sequences for periogs6 are shown.
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in [13] is a particular case of the previous definition whereperiod-1 superstable orbit of symbolic sequence C. For this

P,=P,=P, as can be seen as follows. purpose, we shall be assisted by Fig. 3, where in the upper
Definition 2.Let P be a pattern. The first F harmonic of parts we depict a sketch of the F harmonics where periods

P.HY(P), is formed by appending to itself and changing and symbolic sequences are shown and in the lower parts we

the second C to lor R) if L parity of P is even(or odd.  depict the corresponding Mandelbrot set antenna zones by

The second F harmonic &,H{)(P), is formed by append- means of the escape lines metHd In (a) we show the F

ing P to HEY(P) and changing the second C toér R)if L harmonics of C obtained in accordance with the lero rule. To

parity of H&(P) is even(or odd, and so on. form the first F harmonic of C we ada C to the Cj.e., we

In this definition, we have changed the Schroeder [8le write CC and we change the second C into a L, since the L
for the calculation of the patterns of MSS harmonics in Orderparity of C is even. Therefore the first E harmonic of C is

to calculate the patterns of F harmonj¢s]. As we shall see )" e .
afterwards, we generate all the structural patterns by the onlifF (€)=C+C=CC=CL. To form the second F harmonic

use of this rule of F harmonics. of C we add a C to thérst one, i.e., we write CLC and we
Let us see now the second type of composition, the addichange the second C into a R, since the L parity of CL is
tion toward the right. odd, and we obtaiid ®)(C)=CLR.

Definition 3.(Rightward rule) Let P, be the pattern of the By applying the same procedure, we obtain that the third
augend and leP, be the pattern of the addend to be addedyng fourth F harmonics of C aré (F3)(C)=CLR2 and
toward the right td?,. The composition pattern is formed by H(F4)(C)=CLR3. As is well known[8], CLR,CLR,CLR?,

{ahpeping‘,:‘?g;Zogzp%sag\?e?‘?gpggg theCd toRorL)if (CRL,CRL%,CRL®, ..., in the logistic map are the
As a mnemolnic rule. we call' this composition rule the symbolic sequences of the last appearance superstable orbits

“relo” rule (from R if even and L if oddl Since this addition ~ (although in the Casisl of bCL and CLhR they arle also first
S N appearance superstable orbits since there is only one super-
has dlrect|or(r|ghtvv_ard Il’l_thIS casewe use th_e symbo??. stable orbit of period 2 and only one of periogl. &s we
For example, if P;=CLR and P,=CL then o .

. _ ) ) already showed16], the limit of the F harmonics of a pat-
P+ P,=CLR+ CL=CLRL", where L means LL. HOW-  tern can be calculated. In this case the liti”(C) is the

ever, for our convenience, we sometimes denote EIGR Misiurewicz point with preperiod 2 and periodhy=M, q,

as CLRQ, which is easier to use. whose symbolic sequence is (CL)R. In the Mandelbrot set
The obtaining of F antiharmonics of a pattePnthat we  this point is the main antenna end,(@ [16], whose param-

saw in[13] is a particular case of the previous definition eter value i<=—2. In the real Mandelbrot map this point is

whereP,;=P,=P, as can be seen as follows. the boundary crisis poiriaccording to Greboget al. [17]).
Definition 4.Let P be a pattern. The first F antiharmonic Therefore the F harmonic development of C goes over the

of P,A&(P), is formed by appending to itself and chang-  whole antenna, from the beginning to the end.

ing the second C to For L) if L parity of P is even(or odd. We started from the period-1 superstable orbit C placed in

The second F antiharmonic &,A®)(P), is formed by ap-  the periodic region or Feigenbaum region. The first F har-

pendingP to A®)(P) and changing the second C to® L)  monic of C is the period-2 superstable orbit of the period-

if L parity of A(Fl)(P) is even(or odd, and so on. doubling cascade. All the other F harmonics of C are super-
Just like a MSS antiharmonic is a purely formal construc-stable orbits placed in the period-1%)2Zchaotic band, and

tion [6] and never corresponds to a periodic orbit, an F anti-are the last appearance superstable orbits of this band. If we

harmonic is also a purely formal construction and never corconsider the period®2superstable orbit C as a “gene3,,

responds to a periodic orbit either. But, although they havghen the F harmonics of the gef& generate the period?2

no real existence, they act to generate new patterns when waotic bandB,. However, a period-2 superstable orbit

want to fill up the harmonic structure, as we plan to show iny|aced in the periodic region is also generated: we shall call

works we are preparing about different models of patteriyg the “pridge pattern.” Let us see what happens when this

generation. However, in the case of the structural patterng i is used as a new gei,.

that we are treating here only F harmonics are present. Let us see now Fig.() where we show the harmonics of

By speaking according to the Mandelbrot set terminology,~ _ - :

; G,= CL (the former bridge pattejnTo form its F harmon-
w_e_have two types Qf str_uctural components: disks and Cari'cé we ad(d CL to the pre\?ioups on)e and we change the second
dioids. In the following figures a disk is depicted as a full 9

circle, and a cardioid as a circle with a full half part and an® Into a L ora .R’ maccordanc_e with the lero rule. So,_ we
empty half part. As can be seen in all the figures, the first pobtain thatlthe first, second, '[zhll’d, and fourgth F garmonlcs of
harmonic of a component is a digkelonging to the period- G1 are HE)(G)=CLRL, H(G)=CLRL®, H(G,)=
doubling cascade and is generated by means of a pitchfol&LRL>, andHY(G;)=CLRL’. The limit of these harmon-
bifurcation, all the other F harmonics are cardioi#®long- ics is the Misiurewicz pointn;=Mg3,=(CLR)L, placed in
ing to the chaotic region and are generated by means af=—1.543 689 02 ... [12,13, that separates the period-1
tangent bifurcations and the limit of the F harmonics of a chaotic bandB, and the period-2 chaotic bar}. The first
component is a Misiurewicz point. harmonic generated from CL is the pattern CLRL of period 4
(22), which corresponds to the second superstable orbit of
. Tg:f F;gﬁig:?CAille\leilgRE the period-doubling cascade of the periodic region of C,
which we called a bridge pattern, and all the other F harmon-
Let us see how to generate the chaotic bands in the re@ts of CL are superstable orbits placed in the period-3 (2
Mandelbrot map by beginning just at the origin, i.e., at thechaotic band,, and are the last appearance superstable or-
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FIG. 3. A sketch of the F harmonics of the first four superstable orbits of the period-doubling cascade in the real Mandelbrot map. The
harmonic generation of last appearance superstable patterns of chaotic bands is(ghBeriod-1 chaotic ban8; (b) period-2 chaotic
bandB; (c) period-4 chaotic ban&,; (d) period-8 chaotic bané ;.

bits of this band. Again, if we consider CL as a g&bg we  appearance superstable orbits of the period-8 chaotic band
have that the F harmonics of the ge generate the Bs are generated. The limit of these superstable orbits is the
period-2 chaotic bandB, (and a bridge pattern that will be Misiurewicz pointmg=M§4 [12] that separates the period-4
the new gené&,=CLRL). chaotic band, and the period-8 chaotic barik.

Let us see now Fig. (8) where we show the F harmon-  Generalizing, the F harmonics of the dislof the period-
ics of the previous bridge pattern, the ge@g=CLRL. doubling cascade, the gefBg , generates the last appearance
The first, second, third, and fourth harmonics ® are cardioids of the period‘2chaotic band,,, and a bridge disk

__ 3 . . . .
HO(G,)=CLRL3RL, H®(G,)=CLRLSRL , H®(G,)= of the period-doubling cascade, the ge@g, ;. Likewise,

5 @y v a7 _ : HE)(G,) is a Misiurewicz pointm,=Mi, 1,1 [5], a pri-
CLRLRL , and Hg"(Gp) =CLRL°RL , the first a bridge 51y senaratofor band-merging poiftof the chaotic bands
pattern in the periodic regz]lon and the others superstable OB | andB,.
bits placed m_t?e period-2chaotic bandB,. (We write n This double procedurédisks and chaotic band genera-
times RL asRL , because we only use brackets in Misi- tion) continues indefinitely, and both meet in the Feigen-
urewicz point preperiods.The limit of these harmonics is baum point[18], periodic disks on the right and chaotic
the Misiurewicz poinim,=M§)=(CLRL?)LR [12,13, that ~ bands on the left.
separates the period-2 chaotic bahdand the period-4 cha- ~ Every pattern of the period-doubling cascade is the
otic bandB,. Therefore the F harmonics of the gefle  gene of the corresponding chaotic band. The set of the
generate the period?2chaotic bandB,, and a new bridge F harmonics of all the genes is what we call “the harmonic
patternG;=CLRL3RL that is the gene of the next chaotic structure” and is schematically shown in Fig. 4. The pat-
band. terns of the harmonic structure are called structural patterns

Finally, let us see Fig. (1), where we show the F har- and all of them are F harmoniclsl.(Fl)(Gn) is always a disk,
monics of the previous bridge pattern of period &) 2hat H{™(G,) where I<m<< is a cardioid, andH{(G,) is a
is, the geneG;=CLRL3RL. A new bridge pattern of period Misiurewicz point.

16 in the periodic region, that is, the gefg, and the last What we call here “the harmonic structure” was in part
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FIG. 4. A sketch of the harmonic structure of the real Mandelbrot map. The F harmonics of each period-doubling cascade superstable
orbit, the geneG ,, generate the corresponding chaotic b&jdand the Misiurewicz poinin, that separates the chaotic bagls ; and
B,.

already seen in a previous wofK], but it is here where the structural pattern and each separator is determined by start-
harmonic structure has rigorously been calculated. In Fig. 4ng with the only datum of the pattern C, and by applying the
we can see the periodic region and the chaotic region sepéeftward rule to the successive genes. Structural patterns are
rated by the Feigenbaum point. Likewise, the chaotic regiomlaced in the figure front=0 to c=—2 according to the

is divided in an infinity of chaotic bandB,,, separated by value of their parameter, and the greater the period of the
Misiurewicz points called separatoms),, O<n=<w, Each superstable orbit the lower the position.
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B S

FIG. 5. A sketch of the harmonic structure of the antenna of the midget CLR of the Mandelbrot set antenna. This harmonic structure is
equivalent to the harmonic structure of the whole Mandelbrot set antenna.
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TABLE I. Parity and rules for each type of 1D quadratic map.

Type of 1D quadratic map Leftward map Rightward map
Parity L parity R parity
Rule for F harmonics leftwardero) rule rightward(relo) rule
Rule for F antiharmonics rightwarg@elo) rule leftward(lero) rule
IV. THE HARMONIC STRUCTURE OF THE ANTENNA tip of the midget CLR, tipfCLR). Starting from the bridge
OF A MIDGET disk G;(CLR)=CLR?’LR of period 6, the last

. . appearance cardioids of the period-6X(3') chaotic band
Let us again use the Mandelbrot set terminology, becausgl(CLR) are generated, and a new bridge pattern of

here it is easier to speak about midgets than about windows."*. .
In the Mandelbrot set antenna, every midget is a tiny copy o eriod 12 that will be the geneG,(CLR) of the

- 2 . - .
the whole Mandelbrot set. Therefore the antenna of a midgé?e(orc')()d'12 (3<2_) Chao“f b(?)n_d BZ(CZLR)' LIEEWISE,
is a tiny copy of the antenna of the Mandelbrot gapvi-  HF  (G1(CLR))=my(CLR)=M7 5= (CLR'LRL)LR® that

ously we suppose we are always in the real part of the ManiS & Misiurewicz point that separates the chaotic bands

delbrot set antenfaHence every antenna of a midget should Bo(CLR) andB,(CLR). And so on.

have the same harmonic structure as the harmonic structure !N general, the F harmonics of the diskof the period-
of the antenna of the whole Mandelbrot set. doubling cascade of CLR, the gef,(CLR), generate the

In fact, let us consider, for example, the midget an-l2st appearance components of the chaotic B{ECLR),
tenna that is born in the period-3 cardioid Cl(gee Fig. 5, and also a new gene G,,;(CLR). Besides,
where the harmonic structure of the midget CLR is shpwn HE”(Gn(CLR))=m,(CLR) is the Misiurewicz point that
The cardioid CLR can be considered the g&¢CLR). The ~ separates the chaotic banfls_,(CLR) andB,(CLR). The
first, second, third, etc., F harmonics of CLR areset of the F harmonics of all the genes of CLR is the har-
H®(GH(CLR))=CLR’LR, H®(G,(CLR))=CLR?’LRL?R,  monic structure of CLR; and, as can clearly be seen in Fig. 5,

3) B 2 . - ) it is equivalent to the harmonic structure of the whole Man-
HE’(Go(CLR))=CLRLRL LR, ..., which finish in  jqprot set antenna.

the Misiurewicz point my(CLR)=H{(Go(CLR))=M{Y

=(CLR?LRL that is the end of the CLR midget antenna,

p(CLR). placed ino— - 1.790327 43 .. [16]. The firstF V- THE HARMONIC STRUCTURE OF ANY TYPE

harmonic of CLR is a bridge pattern in the periodic region of

the midget, and all the others are the last appearance cardio- There are two types of 1D quadratic maps: leftward maps
ids of the period-3 (%29 chaotic bandBy(CLR). There- and rightward maps. In the case of a leftward map, when we
fore the F harmonics of the gefi&® (CLR) generate the par- go through the period-doubling cascade orbits from low pe-
tial harmonic structure of the chaotic baBg(CLR) and the riods to great periods, we move towards the left. However, in

|6.4= CRLR®LRLRLR?LR

3
Bs B, B, By

[Ma=My76] [m3g=Mg ] [mp=Ms,=(CRLRIRL| [mi=M41=(CRL)R| [mo=Mp,i= (CRIL|

(=—periodic region chaotic region J

parameter
e

FIG. 6. A sketch of the harmonic structure of a rightward 1D quadratic map.
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the case of a rightward map, when we go through the periodean go from the origirithe first periodic orbit with the sym-
doubling cascade orbits from low periods to great periodsbolic sequence Cto each structural pattern only through F
we move towards the right. Within the same type of 1Dharmonics. This means that in every step we always have the
guadratic maps, the same superstable orbits have the sam@&me direction as the direction of the type of map we are
symbolic sequences. In the case of different types of 10working with. That is not the case of F antiharmonics where
guadratic maps, the symbolic sequence of an orbit is obthe direction of the map and the rule are not the same. All
tained from the symbolic sequence of the same orbit of thehis is shown in Table I, where we show the parity and the
other type by interchanging the L's and R’s. We can see thatule that have to be applied to calculate F harmoficx F
in MSS[6] and in our works L's and R'’s are interchanged antiharmonicsfor each type of 1D quadratic map.
because MSS use the logistic map, a rightward map, and we In Fig. 6 we have depicted the harmonic structure of a
use the real Mandelbrot map, a leftward map. rightward map. Indeed, when we go through the period-
Hence, if we wanted to obtain the harmonic structure of adoubling cascade orbits from low periods to great periods,
rightward map, as the logistic map, definitions 1—-4 that werave move towards the right, against what happened in left-
given for a leftward map have to be changed. In accordanceard maps, where we moved towards the left. Likewise, the
with all we saw before, in leftward maps the parity to be corresponding structural patterns have interchanged their L's
used is the L parity and the rule used to calculate the Fand R’s with regard to leftward maps.
harmonics is the leftwardero) rule. Likewise, in rightward
maps the parity to be used is the R parity and the rule used to
calculate the F harmonics is the rightwdrdlo) rule. There-
fore F harmonics are always bound to the same letter. So, We can give a matrix, the harmonic-structure matrix, to
leftward F harmonics are bound to the L: leftward maps, Lcompactly represent all the F harmonics of the harmonic
parity, and leftwardlero) rule; and rightward, F harmonics structure. For that, we use what we call the harmonic nota-
are bound to the R: rightward maps, R parity, and rightwardion that allows us to put in a very compact way the symbolic
(relo) rule. The structural patterns are F harmonics, and waequences of the F harmonics. This matrix is

VI. THE HARMONIC STRUCTURE MATRIX

Gy HPM(Ge) HP(Gy) ... HI(Gy ... mp
G, HHMG) HPG) ... HIGY ...omy
G, H(Gy) HP(Gy) ... HI(Gy ... m
HY(G))= ,
G HPG) HPG) ... HPG) ... om
G. HYG,) HPG, ... HYG,) ... m,

a matrixi X j where Osi=<<e and O<j=. The first column sponding rule according to the type of 1D quadratic map.
[j=0, becauséSi=H(F°)(Gi)] is the gene column which is The number of letters oB; is kx 2', wherek is the number
constituted by the superstable orbits of the period-doublingf letters of Gy. Therefore the number of letters of the pat-
cascade that finishes in the Feigenbaum pGint=F. The  ternHU)(G)) is (j+1)kx 2".

second column, the first F harmonics of a gene, has the fol- For example, in the case of the real Mandelbrot map,
lowing property:H(G;)=G;. 4, i.e., the first F harmonic the pattern of the second last appearance superstable orbit
of a gene is the next gene. The last colunj¢) is the  of the chaotic bandB, of the window CLR (=1,
band-merging points columm; because it is constituted by j=3 k=3) has 24 letters. The harmonic notation of the orbit

the Misiure_wicz points t_hat merg@er s_eparat)_atwo succes- g H§:3)(G1(CLR)), whose symbolic sequence is
sive chaotic bands. This band-merging points column also

4
finishes in the Feigenbaum point,=F. Since the first and CLR?LRL?R’LR? LR. The parameter value, c=—
the last elements of the last row finish in the Feigenbaund 781870007 6105.. ., is obtained by means of the
point F, all the elements of this row have to be F. method given by Kaplaf19].

Each rowi has a first element, for=0, G;=H®)(G),
which is the gene of this row, a second element, jferl,
which is the gene of the next row, and all the other elements,
for 1<j <o, which are the last appearance superstable orbits The real axis neighborhood of the Mandelbrot set is used
of the chaotic band;. The last element, foj=<, is the  to study the harmonic structure of a 1D quadratic map. We
band-merging poinin; of the bandsB;_; andB;. base this study in the F harmonilcs3] instead of MSS har-

The general ternH{)(G,) is the jth F harmonic of the monics[6], which are clearly different.
geneG;, and can easily be calculated by applying the corre- We introduce composition rules for the addition of pat-

VII. CONCLUSIONS
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terns (towards the left and towards the rightind rules to  tained. The harmonic structure of each midget is similar to
obtain F harmonicéand F antiharmonigsvhich are simpli-  the harmonic structure of the period-1 superstable orbit of
fications of the previous ones. symbolic sequence C.

The F harmonics of thenth superstable orbit of the  For all the generation process of new structural patterns
period-doubling cascadghe geneG, whose period is 2  we use simple mnemonic rules. There are two types of 1D
generate the r(+1)th superstable orbit of the period- quadratic maps: leftward maps and rightward maps. To cal-
doubling cascadéhe geneGy,,; whose period is 2°*) and  cylate the F harmonics of leftward maps we use the L parity
the last appearance superstable orbits of the peffocha-  and the leftward ruldglero rule), and to calculate the F har-
otic bandB,,. The limit of F harmonics o5, is the Misi-  monics of rightward maps we use the R parity and the right-
urewicz pointm, that separates the period-2 chaotic band ward rule(relo rule.

B,-1 and the period-2 chaotic bandB,,. Therefore the set  The harmonic-structure matrix which contains all the F
of F harmonics of all the superstable orbits of the period-harmonics in only one formula has been introduced. The
doubling cascade gives us the harmonic structure of the 1Rarmonic notation that allows us to write the symbolic se-

quadratic map. The harmonic structure has the periodguences of the F harmonics in a very compact way has been
doubling cascade separated from the chaotic region by thgsed in the harmonic-structure matrix.

Feigenbaum point, and the chaotic bands separated by Misi-
urewicz points.

The patterns of the harmonic structure are the structural
patterns. All the structural patterns can be obtained starting
from only one datum: the period-1 superstable orbit of sym- This work was supported by CICYT and DGICYT
bolic sequence C. (Spain Research Grants No. TIC95-0080 and No. PB94-

The harmonic structure of a midget has also been 0b0045, respectively.
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